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Comparison of Three Scattering Models  
for Ultrasound Blood Characterization
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Abstract—Ultrasonic backscattered signals from blood con-
tain frequency-dependent information that can be used to ob-
tain quantitative parameters reflecting the aggregation level of 
red blood cells (RBCs). The approach is based on estimating 
structural aggregate parameters by fitting the spectrum of the 
backscattered radio-frequency echoes from blood to an esti-
mated spectrum considering a theoretical scattering model. 
In this study, three scattering models were examined: a new 
implementation of the Gaussian model (GM), the structure 
factor size estimator (SFSE), and the new effective medium 
theory combined with the structure factor model (EMTSFM). 
The accuracy of the three scattering models in determining 
mean aggregate size and compactness was compared by 2-D 
and 3-D computer simulations in which RBC structural pa-
rameters were controlled. Two clustering conditions were stud-
ied: 1) the aggregate size varied and the aggregate compact-
ness was fixed in both 2-D and 3-D cases, and 2) the aggregate 
size was fixed and the aggregate compactness varied in the 2-D 
case. For both clustering conditions, the EMTSFM was found 
to be more suitable than GM and SFSE for characterizing 
RBC aggregation.

I. Introduction

Quantitative ultrasound (US) techniques are mainly 
based on the frequency analysis of backscattered sig-

nals by biological tissues to determine physical properties 
of the average tissue microstructure. These techniques rely 
on theoretical scattering models to fit the spectrum of 
backscattered echoes to an estimated spectrum using an 
appropriate model. The theoretical scattering model most 
frequently used for this purpose is the Gaussian model 
(GM) [1], [2], which yields two tissue properties: the aver-
age scatterer size and the acoustic concentration (i.e., the 
product of the scatterer number density by the square of 
the relative impedance difference between scatterers and 
the surrounding medium). This approach has been used 
to characterize dilute scattering media such as the eye [3], 
prostate [4], and breast [5]. Blood has also been studied 
with this technique [6], although estimations could be bi-
ased.

An important contribution of ultrasonic blood charac-
terization is to assess the level of red blood cell (RBC) 
aggregation, which is a surrogate marker of inflammation 
[7]. It is well known that when RBCs are under low shear 
rates (<10 s−1), they interact strongly with each other 
and form complex rouleaux or 3-D structures. When the 
shear rate increases, these rouleaux or compact structures 
disaggregate. This aggregation phenomenon is normal in 
human blood, however hyperaggregation is a pathologi-
cal state associated with several circulatory diseases, such 
as deep venous thrombosis, atherosclerosis, and diabetes 
mellitus. Blood characterization using US backscatter 
techniques provides a unique opportunity to monitor RBC 
aggregation noninvasively and in vivo within blood ves-
sels. This quantification may help to elucidate the role of 
RBC aggregation in the etiology of such diseases.

US backscatter by blood is mainly due to RBCs that 
constitute the vast majority (97%) of the blood cellular 
content. Blood can thus be described as a biphasic fluid 
composed of RBCs immersed in plasma. Because RBCs 
are acoustically considered as weak scatterers (impedance 
contrast between RBCs and plasma being around 13%), 
multiple scattering can be neglected. However, for such 
tissue, it is not straightforward to develop a theoretical 
scattering model because of the high density of RBCs 
(their volume fraction or hematocrit varies between 30% 
and 50%) and their ability to form aggregates. The struc-
ture factor model (SFM) [8], [9] is a US scattering model 
proposed to simulate the backscatter coefficient (BSC) of 
aggregated RBCs. The SFM sums the acoustic contribu-
tions from individual RBCs and models their interaction 
by a statistical mechanics structure factor, which is by 
definition the Fourier transform of the spatial distribu-
tion of RBCs [8], [9]. However, the SFM can hardly be 
implemented to estimate the structural aggregate param-
eters in the framework of an inverse problem formulation 
because of the intensive computational time required to 
assess the structure factor with distributions of aggregat-
ing RBCs. That is why Yu and Cloutier [10] developed 
the structure factor size estimator (SFSE) scattering 
theory, which approximates the SFM by using a second-
order Taylor expansion of the structure factor. The SFSE 
is thus not as accurate as the SFM. The SFSE estimates 
two physical parameters describing the microstructure of 
RBC aggregates: the packing factor, which increases with 
erythrocyte clustering, and the average aggregate isotro-
pic radius. However, experiments with pig blood in con-
trolled flow devices [10] and 3-D numerical simulations 
of isotropic monodisperse aggregates [11] recently showed 
that the two indices are correlated and follow a quadratic 
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relationship, thus reducing the BSC parameterization to 
one structural index.

A scattering model called the effective medium theory 
combined with the SFM (EMTSFM) was recently pro-
posed to better approximate the SFM [12]. It assumes 
that aggregates of RBCs can be treated as individual ho-
mogeneous scatterers which have effective properties de-
termined by the acoustical characteristics and concentra-
tion of RBCs within aggregates. The EMTSFM allows 
characterization of the radius, and for the first time in 
the quantitative US field, the compactness of RBC ag-
gregates [12]. In the field of clinical hemorheology [13], 
assessing the compactness of RBC aggregates is of high 
clinical importance because it is related to the binding 
energy between cells. Normal RBC aggregates form rou-
leaux-type structures, whereas pathologies associated with 
stronger binding energies result in clumps of RBCs (close 
to a spherical isotropic packing) [14], [15].

In our previous study [12], the EMTSFM and the SFM 
were compared in the framework of a forward-problem 
study to determine the BSC from a known distribution of 
RBCs with known acoustical parameters. The goodness of 
the approximation of the EMTSFM in comparison with 
the SFM was examined as a function of frequency and 
structural aggregate parameters (aggregate size and com-
pactness). Based on a 2-D simulation study, the EMTSFM 
was found to approximate the SFM with relative errors 
less than 30% for a product of the wavenumber times the 
mean aggregate radius krag ≤ 1.32 [12]. The goals of the 
present paper are:

•	to evaluate the EMTSFM in an inverse-problem 
framework, i.e., to determine RBC structural features 
from the measured BSC, and
•	to compare the EMTSFM with two other scattering 
models: the SFSE and a new implementation of the 
GM slightly modified to treat aggregating scatterers.

To our knowledge, there is no means to experimentally 
assess aggregate sizes at a normal physiological hemato-
crit of 40% because RBCs at that hematocrit are opaque 
to light. It would thus not be feasible to quantitatively 
evaluate the performance of the different models with real 
experimental data. In the field of blood imaging and char-
acterization, the assessment of accuracy of a scattering 
model was only performed at a low hematocrit of 6% by 
comparing optical and acoustic measurements of RBC ag-
gregate sizes [10]. In the current paper, we thus aim to 
determine the performance of three theoretical scattering 
models (the new implementation of the GM, the SFSE, 
and the EMTSFM) to extract the aggregation parameters 
from computer simulations where RBC structural param-
eters (such as the hematocrit, the aggregate size, and com-
pactness) are known.

The important contribution of the EMTSFM is the pa-
rameterization of the BSC with the aggregate compact-
ness [12], which is a structural parameter not available 
in any other modeling strategies proposed in quantitative 

US. The potential of the EMTSFM and of the two other 
scattering models in estimating the aggregate compact-
ness was examined by 2-D computer simulations based 
on the SFM in controlled clustering configurations (when 
the aggregate compactness varies and the aggregate ra-
dius is fixed). This clustering condition was only conduct-
ed in 2-D because of the computational load required to 
generate 3-D RBC distributions with various aggregate 
compactnesses with the SFM [12]. Some 3-D computer 
simulations were also used in the same controlled cluster-
ing configurations as those used in 2-D (when the aggre-
gate size varies and the aggregate compactness is fixed) to 
compare the BSC behavior between 2-D and 3-D simula-
tions, and estimated structural aggregate parameters with 
the three scattering models.

II. Computer Simulations Based on the Structure 
Factor Model (SFM)

This section presents computer simulations performed 
to predict the frequency dependence of the BSC from ag-
gregated RBCs based on the SFM. In the following, it is 
assumed that the incident wavelength λ is large compared 
with the RBC size. Consequently, the RBC shape could 
be approximated by a simple geometry having an equiva-
lent surface in 2-D or having an equivalent volume of a 
RBC in 3-D [16]. RBCs were modeled as parallel infinite 
cylinders in the 2-D case and as spheres in the 3-D case of 
radius a, that have small contrast in acoustical properties 
relatively to the plasma (see Table I). This RBC shape 
approximation has some limitations for larger frequencies 
(>20 MHz) and will be discussed later in Section V-C.

The SFM describing US backscatter by biological tis-
sues consists of summing contributions from cells and 
modeling the cellular interaction by a statistical mechan-
ics structure factor [8], [9]. By considering a collection of N 
identical and weak scattering RBCs, the BSC expression 
can be written as

	 BSCSFM( 2 ) = ( 2 ) ( 2 ),− − −k m k S kσb 	 (1)

where k is the wavenumber and m is the number density 
of RBCs, which is related to the systemic hematocrit ϕ as 
m = ϕ/Ap (where Ap is the RBC area) for 2-D modeling, 
or as m = ϕ/Vp (where Vp is the RBC volume) for 3-D 
modeling. The backscattering cross section σb of a single 
weak RBC was calculated using the fluid infinite cylinder 
expression in the 2-D case [12] or using the fluid-filled 
sphere expression in the 3-D case [17], [18], given by

TABLE I. Acoustical Properties of Blood  
Found in [16] and [21]. 

Density 
ρ (kg·m−3)

Compressibility 
κ (Pa−1)

Impedance 
Z (MRayl)

RBC 1092 3.41 × 10−10 1.766
Plasma 1021 4.09 × 10−10 1.580
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where J1 is the first-order Bessel function of the first kind 
and γz is the relative impedance difference between the 
RBC and its suspending medium (i.e., the plasma). The 
function S is the structure factor representing the spatial 
positioning of RBCs, and is defined by
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where E represents the expected value of a random vari-
able and ri is the position vector defining the center of 
the ith RBC in space. In general, the structure factor of a 
medium containing RBCs distributed in a 2-D space (or 
in the 3-D space) can be determined from the 2-D Fourier 
transform (or 3-D Fourier transform) of the spatial distri-
bution of particles (see [19, Appendix]).

The computation of the BSCSFM using the SFM re-
quires an intensive computation because of the calculation 
of the structure factor S as described in (1). Because the 
structure factor is by definition a statistical quantity, an 
average of structure factors from several RBC spatial dis-
tributions can give an estimated value of S. Because of the 
computational load to generate aggregating RBC distri-
butions, a simple and fast method was used to randomly 
generate non-overlapping RBC aggregates which were iso-
tropic and similar in size. For the 2-D and 3-D computer 
simulations, the simulated BSCSFM were obtained from 
the method described in [12, Section III] and [11, Sec-
tion III], respectively. Note that 2-D simulations are com-
putationally less intensive but significant insights can be 
gained by studying 2-D systems. On the other hand, 3-D 
simulations are intuitively appealing because they better 
mimic experimental situations, but are computationally 
important. These methods are briefly summarized in the 
following.

Random distributions for aggregating RBCs were com-
puted within the simulated surface area of 600 × 600 μm2 
in the 2-D case and within the simulated volume of 1000 
× 125 × 125 μm3 in the 3-D case. The RBC radius a 
was set to 2.75 μm for all simulations. We first specified 
the systemic hematocrit ϕ, the aggregate radius rag, and 
the aggregate compactness ϕi (i.e., the RBC concentration 
within aggregates). Aggregates of identical radii rag and of 
identical compactness ϕi were then randomly distributed 
with non-overlapping positions to give the desired concen-
tration of aggregates ϕag = ϕ/ϕi. Note that in the case of 
the 3-D study, a small number of non-aggregated RBCs 
was added to reach the desired systemic hematocrit. This 

means that all RBCs were aggregated in blood in the 2-D 
case, whereas in the 3-D case, a fraction of RBCs were 
aggregated and the rest remained disaggregated. Finally, 
RBC distributions within aggregates were generated as 
follows:

•	in the 2-D case, the locations of the RBCs were gener-
ated using external and repulsive forces to obtain ran-
dom RBC positions inside each aggregate, such that 
the distribution of RBCs within each aggregate was 
different [12]. This technique allowed several aggrega-
tion configurations to be studied: 1) the aggregate size 
varied and the aggregate compactness was fixed to 
0.6, and 2) the aggregate compactness varied from 0.3 
to 0.6 and the aggregate size was fixed.
•	in the 3-D case, the RBCs were stacked by following 
a hexagonal close packing (HCP) structure for each 
aggregate, such that the distribution of RBCs with-
in each aggregate was identical. This HCP structure 
provides the highest compactness, at about 0.74 for 
spheres [11]. Therefore, this technique allowed several 
aggregation configurations to be studied in which the 
aggregate size varied and the aggregate compactness 
was fixed at 0.74.

For each distribution of RBCs, the 2-D or 3-D Fourier 
transformation of the spatial organization of RBCs was 
then computed to obtain the corresponding structure fac-
tor. A mean structure factor was determined from 400 dif-
ferent tissue realizations in the 2-D case (see [12, Section 
III-B]) and from 250 different tissue realizations in the 
3-D case (see [11, Section III-B]).

III. Ultrasound Backscattering Modeling  
for the Estimation of Structural  

Aggregate Parameters

As seen in Section II, the SFM allows simulation of the 
BSC from RBCs whatever the RBC spatial distribution 
(i.e., disaggregated or aggregated RBCs and/or with vari-
ous aggregate sizes and compactnesses). However, the SFM 
can hardly be implemented to estimate structural param-
eters in the framework of an inverse problem formulation 
because of the intensive computational time to assess the 
structure factor by realizing distributions of RBCs with 
simulations. That is why two scattering theories, named 
the SFSE and the EMTSFM, have recently been devel-
oped to approximate the SFM for practical assessments of 
RBC structural features (i.e., in an inverse problem formu-
lation). This section presents these two scattering theories 
(the SFSE and the EMTSFM) as well as the GM also 
used for tissue characterization. In this work, we present 
a new implementation of the GM model inspired by our 
development on EMTSFM. All three theories fit a curve to 
the simulated BSCSFM from blood to estimate aggregation 
parameters using the minimization routine fminsearch in 
Matlab (The MathWorks Inc., Natick, MA); i.e., a Nelder–
Mead simplex method. Note that this fit was realized in 
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the frequency bandwidth from 4 MHz to the frequency 
corresponding to the first minimum of the BSCSFM (i.e., 
after the frequency-dependent increase in BSC followed by 
a peak and a reduction to its first minimum).

A. The Structure Factor Size Estimator (SFSE)

The SFSE developed by Yu and Cloutier [10] approxi-
mates the SFM with a second-order Taylor expansion of 
the structure factor in k as follows:

	
S k W kR a
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where W is the low-frequency limit of the structure factor 
(S(k)|k→0), called the packing factor [20], [21], and Rg is 
the radius of gyration of RBC aggregates, assumed to be 
isotropic and expressed in number of RBCs [10]. Note that 
in the 3-D case, Rg is related to the isotropic radius Rsp of 
an aggregate (expressed in number of RBCs) by Rg = 

3 5/ spR  [11], [22]. By assuming identical RBCs, and re-
combining (1) and (4), the SFSE model approximates the 
BSC as
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The SFSE assumes that the hematocrit ϕ, the RBC radius 
a, and the acoustical properties of plasma and RBCs are 
known a priori. Therefore, (5) presents only two unknowns 
that characterize the aggregate structure: W and Rg (or 
equivalently, W and Rsp in the 3-D case). Estimated val-
ues of W ∗ and Rg∗ (or equivalently, W ∗ and Rsp

∗  in the 3-D 
case) were determined by fitting the simulated BSCSFM 
given by (1) with BSCSFSE given by (5).

B. The Effective Medium Theory Combined With  
the Structure Factor Model (EMTSFM)

The EMTSFM assumes that all the scatterers are ag-
gregated, that the aggregates are identical and isotropic, 

and that the scatterers within aggregates are evenly dis-
tributed [12]. In the case of blood backscatter, the mod-
el consists of treating the RBC aggregates as individual 
homogeneous particles of radius rag. These homogeneous 
particles are characterized by a density ρag and a com-
pressibility κag derived from the acoustical properties of 
the two fluids constituting them (i.e., ρ1, ρ2, κ1, and κ2, 
where 1 indicates properties of RBCs and 2 indicates those 
of plasma), and from the internal concentration of RBCs 
within the aggregates, defined as the aggregate compact-
ness ϕi, as follows:

	
ρ φ ρ φ ρ

κ
φ
κ

φ
κ

ag

ag

= + −

= +
−

i i

i i

1 2

1 2

(1 )

1 1
.

	 (6)

The BSC from blood is then obtained by summing con-
tributions from individual effective particles of radius rag 
and modeling the effective particle interaction by a statis-
tical mechanics structure factor Sag. The equivalent BSC 
expression is thus given by [12]

	 BSCEMTSFM ag ag ag( 2 ) = ( 2 ) ( 2 ),− − −k m k S kσ 	 (7)

where Sag is the structure factor of a collection of Nag ran-
domly distributed identical particles of radius rag and mag 
is the number density of aggregates, which is related to 
the effective aggregate concentration ϕag. The effective ag-
gregate concentration is equal to the RBC concentration 
in blood ϕ divided by the aggregate compactness ϕi: ϕag = 
ϕ /ϕi. The backscatter cross section of an effective single-
particle σag was calculated using the fluid infinite cylinder 
expression in the 2-D case [12] or using the fluid-filled 
sphere expression in the 3-D case [17], [18] given by (8), 
see above, where zag is the impedance of the equivalent 
particle and γz ag

 is the relative impedance difference be-
tween the equivalent particle and the plasma (γz ag

 = (zag 
− z2)/z2). For a random distribution of hard cylinders in 
2-D, the structure factor was numerically computed as 
described in Appendix A. For a random distribution of 
hard spheres in 3-D, the structure factor can be analyti-
cally calculated as established by Wertheim [23]. The ana-
lytical expression for the structure factor in the 3-D case 
is described in Appendix B.

By assuming that the hematocrit ϕ, the RBC radius 
a, and the acoustical properties of plasma and RBCs are 
known a priori, the unknown parameters are the radius 
of aggregates rag and their compactness ϕi. The unknown 
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parameters were estimated by matching the simulated  
BSCSFM given by (1) with the theoretical BSCEMTSFM 
given by (7).

C. The Gaussian Model (GM)

Using the GM, the BSC is modeled with a spatial auto-
correlation function describing the shape and distribution 
of scatterers in the medium. The scattering sites are as-
sumed to be randomly distributed and of simple geomet-
ric shapes, represented as Gaussian scatterers mimicking 
continuous changes in impedance. In this framework, the 
BSC can be written as the product of the theoretical BSC 
under Rayleigh scattering and the backscatter form factor 
(see [18, Eqs. (74)–(76)] for the GM formulation in 3-D). 
The form factor describes the frequency dependence of 
BSC attributed to the size and shape of the prototype 
scatterer. The Gaussian form factor has been used for 
many applications [3]–[6]. It represents tissue structures as 
continuously varying distributions of acoustic impedance 
fluctuations about the mean value, and the effective radius 
is related to the impedance distribution of the scatterers.

The BSC for the GM formulation is written as the 
product of the BSC in the Rayleigh limit and the back-
scatter form factor as [18]
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where nz is the acoustic concentration (i.e., the product of 
the number density of scatterers times the square of the 
relative impedance difference γz between scatterers and 
the surrounding tissue). In the 2-D case (or respectively in 
the 3-D case), the characteristic dimension d is related to 
the area of the effective scatterer Ss by Ss = 2π d 2 [or re-
lated to the volume of the effective scatterer Vs by Vs = 
(2π d 2)3/2]. Continuous isotropic media can be character-
ized by the correlation distance d, in the same way that 
discrete isotropic media are characterized by a scatterer 
radius [18]. The effective radius of the scatterer aeff is re-
lated to the correlation distance d by setting values of Ss 
(or Vs, respectively) for a continuum model equal to the 
area of an effective cylinder (or equal to the volume of an 
effective scatterer) of radius aeff: Ss = 2πd 2 = πa eff

2  or Vs 
= (2πd 2)3/2 = (4 3) 3/ effπa .

Estimates of the effective radius a eff
∗  and acoustic con-

centration nz∗ were determined by fitting the simulated 
BSCSFM given by (1) with the BSCGM given by (9). Effec-
tive radii aeff estimated with the GM have been hypothe-
sized to be related to the aggregate radii, and the acoustic 
concentration nz is postulated to be the product of the 

number density of aggregates times the square of the rela-
tive impedance difference between aggregates and the 
plasma as follows:
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where zag is the effective impedance of the aggregates ap-
proximated by the mixing law: zag = ϕiz1 + (1 + ϕi)z2. 
Because the hematocrit ϕ and the acoustical properties of 
plasma and RBCs are assumed to be known a priori, the 
aggregate compactness can be deduced from the estimated 
parameters a eff

∗  and nz∗ by using (10) as follows:
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This means that the new proposition of the GM was em-
ployed in our study as an effective medium model, but 
unlike the EMTSFM, the GM is not combined with the 
SFM (such that the GM is assumed to be accurate only at 
low systemic hematocrits). In the following, we thus give 
the estimated parameters a eff

∗  and φi
∗ with the GM, instead 

of the classical estimated parameters a eff
∗  and nz∗.

IV. Results

This section gives the results of the inverse problem 
obtained for 2-D and 3-D computer simulations with 
the three aforementioned backscattering models: SFSE, 
EMTSFM, and GM.

A. Results Obtained From the 2-D Computer Simulations

For the 2-D computer simulations, we first studied clus-
tering configurations in which the aggregate compactness 
was fixed to ϕi = 60% and the aggregate radius rag/a 
varied, and then clustering configurations in which the ag-
gregate radius was fixed to rag/a = 6.32 and the aggregate 
compactness ϕi varied.

1) Results for the SFSE: The SFSE was first examined 
for systemic hematocrits of 10%, 20%, and 30% when the 
aggregate size varied and the aggregate compactness was 
fixed to a high value: ϕi = 60%. Fig. 1 shows BSCSFM as 
a function of frequency for different aggregate sizes and 
systemic hematocrits. The symbols represent the BSCSFM 
computation for the disaggregated case (rag/a = 1) and 
for aggregation with radii rag/a = 3.16, 5.0 and 7.07. Also 
represented by dashed lines in Fig. 1 are the correspond-
ing BSCSFSE fitted curves. The first peaks of the simulated 
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BSCSFM occur at lower frequencies as the aggregate radius 
increases. Because the fitting curves with the SFSE were 
realized in the frequency bandwidth from 4 MHz to the 
frequency corresponding to the first minimum of the  
BSCSFM (except for the disaggregated case, for which the 
frequency bandwidth is from 4 to 50 MHz), the band-
width used for the fitting becomes smaller as the aggre-
gate radius increases. It is clear from the figure that the 
SFSE provided better fits for the lower hematocrit of 10%. 
As the hematocrit increases, the SFSE model is insuffi-
cient to predict the behavior of BSCSFM, especially in the 
low-frequency range. The estimated values of W ∗ and Rg∗ 
are given in Table II for systemic hematocrits of 10%, 
20%, and 30%. In this table, the relative error for param-
eter Rg∗ corresponds to: εRg∗ = (Rg

∗ − (rag/a))/(rag/a). Fig. 

2(a) shows the estimated values of Rg∗ as a function of the 
actual aggregate radii rag/a for all hematocrits. Also rep-
resented are the corresponding linear regression lines 
showing good correlation r2 ≥ 0.95 at all hematocrits. For 
radii rag/a between 4.47 and 7.95, relative errors εRg∗ were 

less than 30% for hematocrits of 10% and 20%. It is inter-
esting to notice that estimated parameters W ∗ and Rg∗ 
follow a linear relation for all hematocrits [see Fig. 2(b)].

The SFSE was also evaluated at systemic hematocrits 
of 10% and 20% when the aggregate size rag/a was fixed 
at 6.32 and the aggregate compactness ϕi varied from 30% 
to 60%. It is important to emphasize that 2-D random 
particle distributions could be easily generated using a 

random number generator up to an area fraction of ap-
proximately 0.5. For the 20% systemic hematocrit, aggre-
gate compactnesses smaller than 40% could not be com-
puted because the corresponding area fractions of 
aggregates were too high: ϕag > 0.5. Similarly, the varia-
tion of the aggregate compactness could not be performed 
at a systemic hematocrit of 30% because the area frac-
tions of aggregates are already equal to 0.5 for an aggre-
gate compactness ϕi = 60%. Fig. 3 displays BSCSFSE in 
dashed lines for the following clustering conditions: rag/a 
= 6.32 and ϕi varying from 30% to 60%. One can observe 
large differences between simulated and fitted SFSE 
curves, especially at low frequencies where the fitted 
curves overestimate the BSCSFM amplitude. These differ-
ences are larger at ϕ = 20%. The estimated values of Rg∗ 
for different aggregate compactnesses are plotted in Fig. 
4(a). Although the true radius is fixed, estimated Rg∗ in-
creases with the aggregate compactness at both hemato-
crits. We found no correlation between the actual fixed 
radius and the estimated radii (r2 < 0.06). Notice the 
linear relation between W ∗ and Rg∗ when the aggregate 
compactness varies [see Fig. 4(b)], as observed previously 
in Fig. 2(b) when the aggregate radius rag/a was changed.

2) Results for the EMTSFM: The BSC curves fitted 
with the EMTSFM are shown in solid lines in Fig. 1 for 
the case of varying values of rag/a, and in Fig. 3 for vary-
ing ϕi. In both cases, the EMTSFM provided good fittings 
to the simulated BSCSFM curves for all systemic hemato-

Fig. 1. Frequency-dependent backscatter coefficients (BSCs) for different aggregate sizes and a constant aggregate compactness ϕi = 60% at systemic 
hematocrits of 10%, 20%, and 30%. The symbols represent the BSCSFM computation. The dashed lines represents the corresponding fitting with the 
SFSE, whereas the solid lines expresses the fitting with the EMTSFM. 

TABLE II. Values of the Aggregate Radius and Compactness Used for Computation of the Simulated BSCSFM,  
and Values of Parameters Found With the SFSE. 

SFM ϕ = 10% ϕ = 20% ϕ = 30%

rag/a
ϕi 

(%) W ∗ Rg∗
εRg∗  
(%) W ∗ Rg∗

εRg∗  
(%) W ∗ Rg∗

εRg∗  
(%)

1 100 0.61 0.39 −61.00 0.37 0.39 −61.00 0.17 0.38 −62.00
3.16 60 3.12 1.50 −52.53 3.29 1.56 −50.63 2.67 1.32 −58.23
5 60 7.41 3.81 −23.80 6.95 3.64 −27.20 5.31 3.04 −39.20
7.07 60 15.82 7.99 13.01 13.57 7.18 1.56 8.58 5.33 −24.61

Aggregating conditions: rag/a varies, ϕ varies, ϕi = 60% (except in the case of diaggregated RBCs where ϕi = 100%). The parameter ε indicates 
the relative error.
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crits. For the clustering conditions in which the aggregate 
radius varied and the aggregate compactness was con-
stant, the estimated values r aag/

∗  and φi
∗ and the corre-

sponding relative errors are given in Fig. 5 for systemic 
hematocrits of 10%, 20%, and 30%. For the clustering 

conditions in which the aggregate compactness varied and 
the aggregate radius was constant, the results are shown 
in Fig. 6 for systemic hematocrits of 10% and 20%. For 
the EMTSFM, the relative errors for each parameter cor-
respond to

	 ε ε
φ φ
φφr
i i

i

r a r a
r a iag

ag ag

ag

/ /
/ and∗ ∗

∗ ∗− −
=

( ) ( )
( ) = .	 (12)

In both sub-studies in which the aggregate radius and 
compactness varied, a very good correspondence can be 
observed between true and estimated aggregate sizes and 
compactnesses. The relative errors for the estimated ag-
gregate radii and compactnesses were less than 13% and 
14%, respectively, for all hematocrits and for all studied 
aggregating configurations.

3) Results for the GM: Fig. 7 presents the BSCSFM 
curves fitted with the GM for several aggregate sizes at 
the same clustering conditions as in Fig. 1. The GM pro-
vided overestimations in the low-frequency range for all 

Fig. 2. (a) Comparison of Rg∗ estimated with SFSE and the actual ag-
gregate size rag/a for the three systemic hematocrits 10%, 20%, and 30%. 
(b) Linear relationships between W ∗ and Rg

∗. Results presented here cor-
respond to the configuration where rag/a varies and ϕi is fixed.

Fig. 3. Frequency-dependent backscatter coefficients (BSCs) computed 
with the SFM for different aggregate compactnesses and a constant 
aggregate size rag/a = 6.32 at systemic hematocrits of 10% and 20%, 
and corresponding fitting with the SFSE (in dashed lines) and with the 
EMTSFM (in solid lines). 

Fig. 4. (a) Aggregate size Rg∗ estimated with the SFSE as a function of 
different aggregate compactnesses for systemic hematocrits of 10% and 
20%. The solid line represents the actual aggregate size rag/a = 6.32. (b) 
Linear relationships between W ∗ and Rg

∗. Results presented here corre-
spond to the configuration where ϕi varies and rag/a is fixed.



IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 60, no. 11, November 20132328

systemic hematocrits. Excellent correlations (r2 ≥ 0.92) 
were found between the estimated and true aggregate ra-
dii for all hematocrits (data not shown). The estimated 
values a aeff/

∗  and φi
∗ from the GM and the corresponding 

relative errors are given in Fig. 8. For systemic hemato-
crits of 10% and 20%, the estimated radii and compact-
nesses are quantitatively satisfactory with relative errors 
less than 15%. However, for ϕ = 30%, the relative errors 
increase to 40%.

For the clustering conditions in which the aggregate 
compactness varied and the aggregate radius was con-
stant, the results are shown in Fig. 9 for systemic he-
matocrits of 10% and 20%. As previously observed with 
the SFSE, the estimated effective radius increases as the 
aggregate compactness increases. The estimated radii and 
compactnesses matched the true parameters at ϕ = 10% 
with relative errors less than 17%. However, for ϕ = 20%, 
large relative errors (up to 74%) were obtained.

4) Comparison of the Errors Between the Simulated BSC 
and the Fitted Curves With the Three Scattering Models: 
The errors (i.e., differences) between the simulated BSC 
and the fitted curves with the three scattering models 
(SFSE, EMTSFM, and GM) are presented in Fig. 10. The 
logarithm of the error is shown to enhance readability. 

The error reveals how the models fit the data. It is clear 
from the figure that errors were smaller with the EMTS-
FM and larger with the GM for each hematocrit. For the 
aggregating conditions in which the aggregate radius var-
ied, the error decreases as the radius increases. When the 
aggregate radius increases, the frequency bandwidth used 
for the fit becomes smaller, and therefore the number of 
frequencies used for the error computation decreases.

B. Results Obtained From the 3-D Computer Simulations

For the 3-D computer simulations, the GM, SFSE, and 
EMTSFM were examined when the aggregate size varied 
and the aggregate compactness was fixed to a high value: 
ϕi = 74%.

It is important to note that the 3-D simulated aggre-
gates were highly packed, leaving small numbers of par-
ticles as non-aggregated RBCs. For each tissue realization, 
the actual mean aggregate radius rag was computed using 
[11, Eq. (6)], and then the concentration of aggregated 
RBCs ϕ′ was computed as

	 ′
× × × −φ
φ π

=
(4 3)

1000 125 125 (10 )
.

3

6 3
iN rag ag/

	 (13)

Fig. 5. (a) Values of r aag/
∗  and φi

∗ estimated by the EMTSFM as a func-
tion of the actual aggregate radius for the three systemic hematocrits of 
10%, 20%, and 30%. Also represented are actual values of rag/a and ϕi. 
(b) Corresponding relative errors of r aag/

∗  and φi
∗. 

Fig. 6. (a) Values of r aag/
∗  and φi

∗ estimated by the EMTSFM as a func-
tion of the actual aggregate compactness for the systemic hematocrits of 
10% and 20%. Also represented are actual values of rag/a and ϕi. (b) 
Corresponding relative errors of r aag/

∗  and φi
∗. 
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Fig. 11(a) shows the values of ϕ′ as a function of the mean 
aggregate radius rag/a for the three systemic hematocrits 
of 20%, 30%, and 40%. The percentage of disaggregated 
RBCs was between 20% and 30% for the systemic hema-
tocrit of 20% and between 27% and 37% for the systemic 
hematocrit of 40%. Note that the three models presented 
in Section III assumed that all RBCs were aggregated in 
blood and that aggregates had identical shape and size. 
Consequently, during the inversion procedure of the 3-D 

BSC data, we neglected the contribution of the disaggre-
gated RBCs on the simulated BSCSFM and we replaced 
the hematocrit ϕ by the value of the concentration of ag-
gregated RBCs ϕ′.

Figs. 11(b) and 11(c) show BSCSFM as a function of 
frequency for several aggregate sizes and systemic hemat-
ocrits of 30% and 40%. Also represented in Figs. 11(b) 
and 11(c) are corresponding fitted curves obtained with 
the SFSE, EMTSFM, and GM. The fitted GM and SFSE 

Fig. 7. Frequency-dependent backscatter coefficients (BSCs) computed with the SFM for different aggregate sizes and a constant aggregate compact-
ness ϕi = 60% at systemic hematocrits of 10%, 20%, and 30%, and corresponding fitting with the GM. 

Fig. 8. (Top) Values of a aeff/
∗  and φi

∗ estimated by the GM as a function 
of the actual aggregate radius for the three systemic hematocrits of 10%, 
20%, and 30%. Also represented are actual values of rag/a and ϕi. (Bot-
tom) Corresponding relative errors of a aeff/

∗  and φi
∗. 

Fig. 9. (Top) Values of a aeff/
∗  and φi

∗ estimated by the GM as a function 
of the actual aggregate compactness for the systemic hematocrits of 10% 
and 20%. Also represented are actual values of rag/a and ϕi. (Bottom) 
Corresponding relative errors of a aeff/

∗  and φi
∗. 
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curves did not produce good fits to the 3-D data and over-
estimated the BSCSFM amplitude (especially in the low 
frequency range), as observed in the 2-D case (see Figs. 
1 and 7). On the contrary, the EMTSFM provided good 
fittings to the simulated BSCSFM curves.

The results obtained with the SFSE were already pre-
sented in a previous article [11]. Excellent correlations (r2 

≥ 0.94) were found between the estimated and true ag-
gregate radii for all hematocrits (see [11, Fig. 5(a)]). It can 
also be seen in [11, Fig. 5(a)] that for each hematocrit 
there is an aggregate size range for which the SFSE meth-
od works at its best. For example, relative errors for esti-
mated radii were less than 20% for true radius values be-
tween 14 and 17 μm at the hematocrit of 40%. The 
parameters W ∗ and Rsp

∗  followed a quadratic relationship 
(as in [11, Fig. 5(b)]).

Fig. 12 gives the values of rag
∗  and φi

∗ estimated with the 
EMTSFM and corresponding relative errors that were less 
than 15% and 23%, respectively, for all hematocrits. Fig. 
13 gives the values of a eff

∗  and φi
∗ estimated with the GM 

and corresponding relative errors. The estimated radii 
with the new formulation of the GM are quantitatively 
satisfactory, with relative errors less than 9% for all he-
matocrits. The relative errors for the estimated compact-
nesses with the GM are larger with relative errors up to 
32% for the hematocrits of 20% and 30%, and up to 76% 
for the hematocrit of 40%.

V. Discussion and Conclusions

Three scattering models for the characterization of 
RBC aggregation were examined. From these models, the 
gold-standard simulated BSCSFM was fitted and aggrega-
tion parameters were extracted. The SFSE has been de-
veloped for blood characterization and the GM is a model 
that has been used in various tissue studies. Herein, the 
radius estimates Rg from the SFSE and aeff from the GM 
were hypothesized to represent the aggregate size.

A. Clustering Conditions in Which the Aggregate Radius 
Varied and the Aggregate Compactness Was Constant 
(2-D and 3-D Computer Simulations)

The 2-D and 3-D computer simulations were performed 
on the same clustering configuration in which the aggre-

Fig. 10. Logarithm of the error between the simulated BSCSFM and the 
fitted curves with the three scattering models GM, SFSE, and EMTS-
FM. (a) As a function of the actual aggregate size for the clustering 
configuration where rag/a varies and ϕi is fixed. (b) As a function of the 
actual aggregate compactness for the clustering configuration where ϕi 
varies and rag/a is fixed.

Fig. 11. (a) Concentration of aggregated red blood cells (RBCs) ϕ′ as a function of the mean aggregate radius rag/a for the three systemic hemato-
crits of 20%, 30%, and 40%. (b) and (c) Frequency-dependent backscatter coefficients (BSCs) computed with the SFM in the 3-D case for different 
aggregate sizes and a constant aggregate compactness ϕi = 74% at systemic hematocrits of 30% and 40%, and corresponding fitting with the SFSE 
model, the EMTSFM, and the GM. 
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gate radius varied and the aggregate compactness was 
constant. It is interesting to observe the same BSCSFM be-
havior for both 2-D and 3-D studies. Indeed, the simulated 
BSCSFM amplitude increases with the size of aggregates 
and the BSCSFM first peaks occur at lower frequencies as 
the aggregate radius increases (see Fig. 1 in the 2-D case, 
and Figs. 11(b) and 11(c) and [11, Fig. 4] in the 3-D case). 
Moreover, as can be observed in Figs. 1 and 7 in the 2-D 
case and in Fig. 11 in the 3-D case, the data fitting quali-
ties obtained with the three models were quite similar. In 
both 2-D and 3-D cases, it is clear that the GM and the 
SFSE are insufficient to model the complex behavior of 
BSC and that the EMTSFM was the model that better 
fitted the BSC data for all studied hematocrits.

Although the SFSE model did not produce good spec-
tral fits to the BSC data for 2-D and 3-D computer simu-
lations, significant correlations were found between the 
estimated and true radii with r2 superior to 0.95 at all 
hematocrits (see Fig. 2(a) and [11, Fig. 5(a)]). However, 
the estimated aggregation parameters W ∗ and Rg∗ followed 
a linear relationship in our 2-D simulation study. This re-
lation was also found to be quadratic in 3-D numerical 
simulations [11] and under experimental conditions [10]. It 
means that the BSC parameterization can be reduced to 

one parameter and that no new information can be ob-
tained with the parameter W ∗.

The EMTSFM and the GM used as effective medium 
models gave quantitatively satisfactory radius estimates 
with relative errors less than 15% for the 10% and 20% 
hematocrits in the 2-D case, and for all hematocrits in 
the 3-D case. For the highest systemic hematocrit, the 
aggregate compactnesses were better estimated with the 
EMTSFM, with relative errors less than 14% in the 2-D 
case (and less than 23% in the 3-D case), whereas the 
relative errors were between 19% and 36% in the 2-D case 
(and between 59% and 76% in the 3-D case) for the GM. 
These results with the EMTSFM and the GM were some-
what anticipated because the assumption of a random dis-
tribution of scatterers used by the GM fails because of the 
spatial correlation between scatterers in a dense medium 
[24]. To conclude, the EMTSFM was more suitable than 
the GM and SFSE for characterizing the aggregate micro-
structure in both 2-D and 3-D studies.

B. Clustering Conditions in Which the Aggregate 
Compactness Varied and the Aggregate Radius Was 
Constant (2-D Computer Simulations)

For the highest simulated hematocrit of 20%, the ag-
gregate radii normalized by the RBC radius were esti-
mated between 4.34 and 8.55 using the SFSE model and 
between 3.83 and 5.33 using the GM (see Figs. 4(a) and 
9), whereas the actual aggregate radius was rag/a = 6.32. 
Therefore, we found no correlation between the actual 
fixed aggregate radius and the estimated radii. The GM 
and SFSE cannot take into account a variation in the ag-
gregate compactness at a large hematocrit, because it is 
interpreted as a change in the aggregate size.

In the case of the SFSE, one could have expected a 
fixed value of the estimated radius Rg∗ and a variation of 
the estimated packing factor W ∗, when the aggregate ra-
dius was fixed and the aggregate compactness varied. 
However, both Rg∗ and W ∗ increased as the true aggregate 
compactness was raised. The estimated parameters Rg∗ 
and W ∗ followed linear relations for all hematocrits [see 
Fig. 4(b)], as observed previously in Fig. 2(b) when the 
aggregate radius rag/a was changed. It means that W ∗ and 
Rg∗ carry the same information and that the BSC param-
eterization is reduced to one parameter.

The estimated parameters using the EMTSFM present-
ed in Fig. 6 show that the model gave quantitatively satis-
factory estimates for all aggregate compactnesses and for 
all studied hematocrits. Contrary to the GM and SFSE, 
the EMTSFM provided a quasi-constant aggregate radii 
between 5.7 and 5.9 for both studied hematocrits. More-
over, the aggregate compactnesses were estimated with 
relative errors less than 12% at both studied hematocrits 
for that model. The errors between simulated BSCSFM and 
the fitted curves were also smaller with the EMTSFM, as 
can be observed in Fig. 10(b). To conclude, the EMTS-

Fig. 12. (Top) Values of r aag/
∗  and φi

∗ estimated by the EMTSFM as a 
function of the actual aggregate radius for the three systemic hemato-
crits of 20%, 30%, and 40%. Also represented are actual values of rag/a 
and ϕi. (Bottom) Corresponding relative errors of r aag/

∗  and φi
∗. 
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FM was the model that better explained the simulated  
BSCSFM.

C. Computation of RBC Distributions and of BSCSFM

The two methods we used here to obtain the RBC spa-
tial distributions did not take into consideration realistic 
interactions between RBCs. These methods were already 
presented in [12] and [11] for the 2-D and 3-D computer 
simulations, respectively. They were simple and fast meth-
ods to generate samples containing non-overlapping, iden-
tical and isotropic aggregates. The 3-D computer simula-
tions allowed better mimicking of real data but they are 
time consuming (see [11, Sections III-A and V] to obtain 
a quick review of different approaches for simulating com-
pact RBC aggregates). To simulate the BSC data with the 
SFM reference model, the method we chose to distribute 
RBCs in the 3-D case allowed 1) studying of various ag-
gregate sizes with the same aggregate compactness and 2) 
reaching the physiological hematocrit of 40% by mixing 
identical RBC aggregates and disaggregated RBCs. Be-
cause studied scattering models assumed that all RBCs 
were aggregated in blood and because the average per-
centage of disaggregated RBCs was small (around 25%), 
the influence of the disaggregated RBCs on the simulated 

BSCSFM was neglected during the inversion procedure of 
the 3-D BSC data. Contrary to the 3-D modeling, the 
method we chose to distribute RBCs in the 2-D case al-
lowed 1) studying of the clustering condition in which the 
aggregate compactness varies and the aggregate size is 
fixed and 2) having only aggregated RBCs in blood. How-
ever, the 2-D computer simulations were limited to a max-
imum hematocrit of 30% because of the difficulty to simu-
late with the SFM values greater than 30%. To clarify, the 
main difficulty in the 2-D case was to distribute compact 
aggregates and to have only aggregated RBCs in blood. 
The maximum value of the aggregate area fraction φagmax

 
was fixed to 0.5, corresponding to the maximum particle 
area fraction that can be easily generated using a random 
number generator. The procedure we chose to distribute 
the RBCs within aggregates allows reaching a maximum 
value of aggregate compactness φimax

 equal to 0.6 (see [12, 
Section III-B]). As a consequence, the maximum value of 
the systemic hematocrit was limited to ϕmax = φ φagmax maxi  
= 0.3.

We also modeled individual biconcave RBCs as spheres 
of equivalent volume in the 3-D study and studied BSC 
between 4 and 45 MHz. The impact of modeling a RBC by 
a sphere on the frequency dependence of the backscatter 
cross section has been studied and errors are introduced 
above 20 MHz [16], [25]. The impact of this simplification 
on the simulated BSCSFM and structural aggregate esti-
mates with the three models (SFSE, GM, and EMTSFM) 
is unknown and still needs to be explored.

D. On the Use of the EMTSFM In Vivo

The EMTSFM assumes that all RBCs are aggregated 
in blood and that aggregates are identical and isotropic. 
Therefore, the BSC behavior obtained in our simulations 
has pronounced frequency peaks. In experimental condi-
tions [10], the BSC behavior was smoother and the peaks 
were less pronounced. The reason behind this might be 
that real blood contains several sizes of aggregates and, 
because the location of BSC peaks are different for dif-
ferent aggregate populations, a relatively smoother BSC 
curve can be obtained. Another important aspect to con-
sider is the assumption of isotropic aggregates. In human 
blood, low shear rates can promote the formation of RBC 
aggregates having anisotropic (i.e., rouleaux) or isotro-
pic (i.e., clump) structures. The rouleaux-like pattern is 
typically associated with normal blood. However, as the 
binding energy between RBCs increases with inflamma-
tion [26], aggregates form clump structures, as in diabetes 
mellitus [14], [15]. The assumption of isotropic aggregates 
in the EMTSFM is thus valid as far as we are concerned 
with the study of pathological states. In the case of nor-
mal human rouleaux of RBCs, if the EMTSFM is applied 
to estimate structural parameters such as the aggregate 
size and compactness, this assumption would obviously 
create a bias against the parameter estimation. There-
fore, future improvements should consider incorporating 

Fig. 13. (Top) Values of a aeff/
∗  and φi

∗ estimated by the GM as a function 
of the actual aggregate radius for the three systemic hematocrits of 20%, 
30%, and 40%. Also represented are actual values of rag/a and ϕi. (Bot-
tom) Corresponding relative errors of a aeff/

∗  and φi
∗. 
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the aggregate anisotropy and the polydispersity in terms 
of aggregate size and compactness to provide an optimal 
model for the inversion of experimental data. Future vali-
dations may also evaluate the EMTSFM in a controlled 
Couette flow experiment with ghost RBCs (i.e., optically 
visible RBCs with no hemoglobin and viable membrane 
properties) coated with dextran polymers to change at-
tractive energies between erythrocytes and thus modulate 
the aggregate compactness and size.

Another difficulty in applying the EMTSFM in vivo is 
that the spectral content of backscattered echoes is also 
affected by attenuation caused by intervening tissue layers 
(such as the skin) between the probe and the blood flow. 
To correctly evaluate microstructural parameters, it is 
thus of major interest to take into account tissue attenua-
tion effects. Note that the SFSE was slightly modified to 
introduce the attenuation term in the BSC expression and 
was named the structure factor size and attenuation esti-
mator (SFSAE) [27]. The SFSAE allows to determine si-
multaneously blood structural parameters (i.e., W ∗ and 
Rg
∗) and the total attenuation [28], [29]. Future improve-

ments of the EMTSFM should incorporate the tissue at-
tenuation as for the SFSAE. This means that the EMTS-
FM should be slightly modified by introducing the 
attenuation term to simultaneously estimate the RBC ag-
gregate size, compactness, and the total attenuation.

Appendix A 
Numerical Computation of the Structure Factor 

Sag for Hard Cylinders in 2-D

Because there is no analytical expression of the struc-
ture factor Sag for hard cylinders in 2-D [30], [31], Sag was 
numerically computed for several values of ϕag varying 
from 0.01 to 0.5 with a step of 0.01. This means that, in 
the 2-D case, the cylinder concentration ϕag was rounded 
to the second decimal for the computation of Sag in (7). 
Note that the computation of Sag depends not only on the 
area fraction ϕag but also on the effective particle radius 
rag. That is why Sag that depends on rag was computed in 
a dimensionless way as described next.

For each specified value of ϕag, aggregates of an arbi-
trarily normalized (dimensionless) radius of 1/60 were 
randomly distributed within a dimensionless surface area 
L′2 = 1 × 1 with non-overlapping positions using a ran-
dom number generator. The corresponding density matrix 
D′ was computed by dividing the square simulation plane 
L′2 into N p

2 pixels (herein, Np = 512) and by counting the 
number of particles falling into each pixel. The Fourier 
transformation of the density matrix D′ was then com-
puted to generate a structure factor Sag. A mean Sag was 
determined by repeating this procedure 400 times. When 
the value of the effective particle radius rag was specified, 
the centered grid of wavevectors for the structure factor 
Sag was computed between ±(π Np)/(2 × 60rag) with a 
step of Δk = π /60rag (i.e., by putting the simulated sur-
face length L′ = 60rag).

Appendix B 
Analytical Expression of the Structure Factor 

Sag For Hard Spheres in 3-D

The structure factor S for hard spheres is given by [23], 
[32]
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where m is the number density of hard spheres, d is the 
hard sphere diameter, and c(z) is the direct correlation 
function given by [23], [32]
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The coefficients c0, c1, and c3 are given by [23], [32]
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